Ag–Cu alloy surfaces in an oxidizing environment: A first-principles study
نویسندگان
چکیده
Recent experiments on model catalysts have shown that Ag-Cu alloys have improved selectivity with respect to pure silver for ethylene epoxidation. In this paper we review our first-principles investigations on the (111) surface of this alloy and present new findings on other low index surfaces. We find that, for every surface orientation, the presence of oxygen leads to copper segregation to the surface. Considering the alloy to be in equilibrium with an oxygen atmosphere and accounting for the effect of temperature and pressure, we compute the surface free energy and study the stability of several surface structures. Investigating the dependence of the surface free energy on the surface composition, we construct the phase diagram of the alloy for every surface orientation. Around the temperature, pressure and composition of interest for practical applications, we find that a limited number of structures can be present, including a thin layer of copper oxide on top of the silver surface and copper-free structures. Different surface orientations show a very similar behavior and in particular a single layer with CuO stoichiometry, significantly distorted when compared to a layer of bulk CuO, has a wide range of stability for all orientations. Our results are consistent with, and help explain, recent experimental measurements. PACS numbers: 68.43.Bc, 81.65.Mq, 61.82.Bg
منابع مشابه
First-principles investigation of Ag-Cu alloy surfaces in an oxidizing environment
In this paper, we investigate by means of first-principles density functional theory calculations the 111 surface of the Ag-Cu alloy under varying conditions of pressure of the surrounding oxygen atmosphere and temperature. This alloy has been recently proposed as a catalyst with improved selectivity for ethylene epoxidation with respect to pure silver, the catalyst commonly used in industrial ...
متن کاملAlloy catalyst in a reactive environment: the example of ag-cu particles for ethylene epoxidation.
Combining first-principles calculations and in situ photoelectron spectroscopy, we show how the composition and structure of the surface of an alloy catalyst is affected by the temperature and pressure of the reagents. The Ag-Cu alloy, recently proposed as an improved catalyst for ethylene epoxidation, forms a thin Cu-O surface oxide, while a Ag-Cu surface alloy is found not to be stable. Sever...
متن کاملAg-Cu catalysts for ethylene epoxidation: selectivity and activity descriptors.
Ag-Cu alloy catalysts for ethylene epoxidation have been shown to yield higher selectivity towards ethylene oxide compared to pure Ag, the unique catalyst employed in the industrial process. Previous studies showed that under oxidizing conditions Cu forms oxide layers on top of Ag. Using first-principles atomistic simulations based on density functional theory, we investigate the reaction mecha...
متن کاملCu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures
The classic metallurgical systems—noble-metal alloys—that have formed the benchmark for various alloy theories are revisited. First-principles fully relaxed general-potential linearized augmented plane-wave ~LAPW! total energies of a few ordered structures are used as input to a mixed-space cluster expansion calculation to study the phase stability, thermodynamic properties, and bond lengths in...
متن کاملDevelopment of casting investment preventing blackening of noble metal alloys part 1. Application of developed investment for Ag-Pd-Cu-Au alloy.
The objective of this study is to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. The experimental investments were prepared using a gypsum-bonded investment in which the metallic powders such as boron (B), silicon (Si), aluminum (Al) and titanium (Ti) were added as oxidizing agents. An Ag-Pd-Cu-Au alloy was cast into the mold made of the pre...
متن کامل